If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2s^2+10s-133=0
a = 2; b = 10; c = -133;
Δ = b2-4ac
Δ = 102-4·2·(-133)
Δ = 1164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1164}=\sqrt{4*291}=\sqrt{4}*\sqrt{291}=2\sqrt{291}$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{291}}{2*2}=\frac{-10-2\sqrt{291}}{4} $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{291}}{2*2}=\frac{-10+2\sqrt{291}}{4} $
| 9x-(5x-9)=29 | | 97-(7x+16)=7(x+3)+x | | -5u/9=-10 | | x2−2x+1=0 | | 40+x(.2)=25+x(.25) | | -4/7y=16 | | 4(2x+5)−4x+1=29 | | 7/3+1/5t=7 | | -42-11v=-17v+12 | | 2/3•-5/8x=26 | | 8(r-4)=-17+3r | | 27x^2-51x+20=0 | | X+5=14-x/2 | | 2/3•-5/8x=27 | | -4(t-4)+6t=8t-9 | | x=4(180-x)+50 | | 11w+2(w+1)=-5w-6 | | X+x/7+1/11(x+x/7)=60 | | -31-3/8f=-17 | | 11k-24/2-3=3k | | 2/n-2+1/n+1=1/n^2-n-2 | | 3m-3=4m-m | | x/10+13=20 | | 3(2x+1)=-3(5x-2)-2x | | 2.5x+13=-2 | | 3+4*3=x | | 5w^2+24w-36=0 | | -28=3n-n^2 | | B=3t,3 | | 10x-8/3+4=4x | | 11w+19w-4+2=-3w+2-4 | | 0=6+q |